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Recent quantum-oscillation experiments in underdoped high-temperature superconductors seem to imply
two paradoxes. The first paradox concerns the apparent nonexistence of the signature of the electron pockets in
angle-resolved photoemission spectroscopy �ARPES�. The second paradox is a clear signature of a small
electron pocket in quantum-oscillation experiments, but no evidence as yet of the corresponding hole pockets
of approximately double the frequency of the electron pocket. This hole pockets should be present if the
Fermi-surface reconstruction is due to a commensurate density wave, assuming that Luttinger sum rule relating
the area of the pockets and the total number of charge carriers holds. Here we provide possible resolutions of
these apparent paradoxes from the commensurate d-density wave theory. To address the first paradox we have
computed the ARPES spectral function subject to correlated disorder, natural to a class of experiments relevant
to the materials studied in quantum oscillations. The intensity of the spectral function is significantly reduced
for the electron pockets for an intermediate range of disorder correlation length, and typically less than half the
hole pocket is visible, mimicking Fermi arcs. Next we show from an exact transfer-matrix calculation of the
Shubnikov-de Haas oscillation that the usual disorder affects the electron pocket more significantly than the
hole pocket. However, when, in addition, the scattering from vortices in the mixed state is included, it wipes
out the frequency corresponding to the hole pocket. Thus, if we are correct, it will be necessary to do
measurements at higher magnetic fields and even higher-quality samples to recover the hole-pocket frequency.
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I. INTRODUCTION

High-temperature superconductors have been addressed
from a remarkable number of vantage points. Nonetheless
many of the basic questions still remain unresolved and the
notion of broken symmetries arising from a Fermi liquid has
been traditionally discarded in favor of many exotic ideas.
Here we revisit the Fermi-liquid concept and a particular
broken symmetry in response to a class of recent quantum-
oscillation experiments.1–6 We and others7–13 have had some
success in this respect. If these theories and experiments are
correct, one will have to radically alter our 20 year-old view
of these superconductors.14 The totality of phenomenology
cannot of course be explained without serious Fermi-liquid
corrections. But as long as the quasiparticle residue is finite,
we hope that the low-energy properties can be understood
from our perspective.

Two paradoxes have arisen in the context of the quantum-
oscillation measurements. The first is the contrast between
Fermi arcs observed in angle-resolved photoemission
�ARPES� experiments15 on one hand and recent quantum-
oscillation experiments suggesting small Fermi pockets in
underdoped YBa2Cu3O6+� �YBCO�,1–6 on the other. This is
particularly clear in recent ARPES experiments where an ef-
fort was made to examine YBCO with similar doping as in
the quantum-oscillation measurements.16

The second paradox is the nonexistence of any evidence
of the hole pockets in quantum-oscillation measurements.
Within the density wave scenario of wave vector Q= �� ,��
�the lattice spacing set to unity�, there should be two domi-
nant frequencies in quantum oscillations. One corresponding
to the electron pocket at about 500 T and the other corre-

sponding to the hole pocket at around 900 T. These are of
course rough numbers corresponding to approximately 10%
doping, assuming that the Luttinger sum rule is satisfied in
the mixed state, that is, the quantum oscillations reflect the
normal state even if the measurements may lie within the
mixed state.

The concept of a broken symmetry is very powerful be-
cause deep inside a phase a physically correct effective
Hamiltonian can address many important questions, whereas
our inability to reliably predict properties of even a single-
band Hubbard model, while widely pursued, has been a lim-
iting factor. This is not an empty exercise, if new phenomena
can be predicted or striking facts can be explained with some
degree of simplicity. That broken symmetry both dictates and
protects the nature of elementary excitations, determining the
properties of matter, is important to emphasize.

The suggested form of order, the d-density wave
�DDW�,17 explains numerous properties of these supercon-
ductors, including the concomitant suppression of the super-
fluid density,18 Hall number,19 and more recently the large
enhancement of Nernst effect in the pseudogap state,20 in
addition to the existence of a single-particle gap of dx2−y2

form above Tc. There are also theoretical reasons why DDW
is a possibility. It competes favorably with other ordering
tendencies in variational studies of extended Hubbard mod-
els with nearest-neighbor repulsion and pair-hopping
terms.21,22 It is also realized in a class of two-leg ladder
models with nearest-neighbor repulsion.23 However, what-
ever form the correct Hamiltonian takes, we know that it
must favor d-wave superconductivity �DSC�. Such a Hamil-
tonian will almost certainly favor DDW order as well in light
of the abundance of local Hamiltonians which do not dis-
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criminate between DSC and DDW order. In fact, two care-
fully designed difficult polarized neutron-scattering experi-
ments have provided tantalizing direct evidence of DDW
order,24,25 although other experiments have claimed
otherwise.26–28

A natural enemy of the pristine properties of matter is
disorder that is unavoidable in complex systems such as
high-temperature superconductors. The role of disorder was
emphasized in the original proposal of DDW order as a rel-
evant competing order in the phase diagram of high-Tc
superconductors,17 although our views of disorder have
greatly evolved during the intervening years. It is this DDW
order combined with disorder that would be the focus of the
present paper in resolving the paradoxes stated above. The
disorder considered are of two different types: �1� scattering
due to impurities and defects and �2� scattering from vortices
in the mixed states.

We consider two kinds of intrinsic disorder: �a� Gaussian
white noise and �b� correlated disorder with a finite correla-
tion length. In the momentum space the scattering rate for
correlated disorder will decay as exp�−q2lD

2 �, where q is the
momentum transfer between the initial and the final states, lD
being the correlation length. Therefore, because of its smaller
size, the states corresponding to the electron pockets are scat-
tered more than on the hole pockets. This is an interpretation
of the phenomenon and is based on intrapocket scattering.
An alternative interpretation involves the density of states on
the Fermi surface of the electron pockets. In contrast, for
white noise, scattering is independent of momentum and af-
fects both pockets similarly. Disorder naturally has a strong
effect on ARPES spectral function, which is sensitive to the
coherence factors that are analogs of Wannier functions. In
Shubnikov-de Haas �SdH� oscillations it is only the averaged
effect of disorder that enters by determining the effective
lifetime on the Fermi surface. Therefore, the role of disorder
is quite different, as we shall explicitly see.

Correlated disorder is also experimentally relevant. Un-
like quantum-oscillation experiments which probes bulk
properties, ARPES is inherently a surface probe. In the rel-
evant case of YBCO, as cleaved surfaces show that CuO and
BaO terminations give different contributions to the total
photoemission intensity, with a hole doping nh=30%, almost
irrespective of the nominal bulk doping. This self-doping
was controlled by evaporating potassium in situ on the
cleaved surface, so as to reduce the hole content down to the
value of underdoped bulk YBCO ���0.5�,16 the doping
level for which many quantum-oscillation experiments are
carried out. The potassium overlayer is likely to produce an
effective correlated disorder in the CuO plane.

To explain the second paradox we shall adapt an analysis
of Stephen29 to include a normal state that exhibits DDW
order. We shall see that the relativistic character of the nodal
fermions of the hole pocket, as opposed to the nonrelativistic
nature of the charge carriers of the electron pocket provides a
possible explanation. If we denote the Dingle factor of the
electron pocket by De=e−�/�c�v, the Dingle factor of the hole
pocket is Dh�De

4.4. This huge suppression may be the reso-
lution of the missing frequency from the hole pocket. Here,
�c is the cyclotron frequency corresponding to the electron
pocket and 1 /�v is the scattering rate of the electrons from

the vortices in the mixed state. The analysis of Stephen also
leads to a tiny shift of the relative frequency of the quantum
oscillations in the mixed state, on the order of 10−6. Thus,
there is enough leeway that even a very large error in this
estimate will not affect our conclusions.

The organization of the paper is as follows. In Sec. II we
compute the ARPES spectral function and show that disorder
can destroy the evidence of electron pockets. Section III is
devoted to an exact transfer-matrix computation of
Shubnikov-de Haas oscillations and the effect of disorder on
it. Section IV contains a discussion of scattering of quasipar-
ticles of the putative normal state from the vortices in the
mixed state. In Sec. V we briefly summarize the salient fea-
tures of our work.

II. SPECTRAL FUNCTION

A. Hamiltonian

The Hamiltonian of commensurate DDW order in terms
of the fermion creation and destruction operators, ck

† and ck,
in the momentum space is

H1 = �
k�RBZ

��kck
†ck + �k+Qck+Q

† ck+Q�

+ �
k�RBZ

�iWkck
†ck+Q + H.c.� , �1�

where the ordering wave vector Q= �� ,�� and �k is the
single-particle spectra. The lattice constant is set to be unity
for simplicity. The reduced Brillouin zone is bounded by
ky �kx= ��. We define �k by

�k = − 2t�cos kx + cos ky� + 4t� cos kx cos ky

− 2t��cos 2kx + cos 2ky� �2�

and the DDW gap by

Wk =
W0

2
�cos kx − cos ky� . �3�

B. Disorder

Potential disorder in real space with a finite correlation
length lD is modeled by

V�r� =
gV

2�lD
2 � dx e−�r − x�2/2lD

2
G�x� , �4�

where the disorder averages are �G�x��=0 and �G�x�G�y��
=��x−y�; the disorder intensity is set by gV. This disorder
Hamiltonian in the momentum space is then

H2 = �
k1,k2�BZ

V�k1,k2�ck1

† ck2
+ H.c., �5�

where the matrix elements are

V�k,k + q� =
gV

2�
e−q2lD

2 /2u�q� , �6�

and u�q� is
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u�q� =
1

2�
� dy G�y�e−iq·y, �7�

satisfying the conditions of �u�q��=0 and �u�q�u�q���
=��q+q��. In practice, we generate u�q� directly with the
desired statistical properties and then compute the matrix
elements in Eq. �5�.

C. Computation of ARPES spectral function

Once the full Hamiltonian H=H1+H2 is generated, it is
diagonalized by the transformation ck=�lPk,l�l, where �l is
the annihilation operator of quasiparticles with energy El.
The coefficients Pk,l and energy El are obtained through an
exact numerical diagonalization procedure. Finally, the
ARPES spectral function A�k ,�� at a temperature T is given
by

A�k,�� = 2��
l

�Pkl�2nl��� − El� , �8�

where nl=1 / 	1+exp
�El−�� /kBT�� is the fermion occupa-
tion number. Note that the numerical implementation of Eq.
�8� requires an approximation of the delta function by, for
example, a Lorentzian distribution.

We discretize the Brillouin zone with a mesh of size
80	80, and diagonalize the corresponding Hamiltonian. The
parameters we choose for YBCO at 10% doping are:
t=0.3 eV, t�=0.3t, t�= t� /9.0, and W0=0.0825 eV, same as
before.7 The chemical potential � is set to be −0.2627 eV.
These parameters yield a hole doping of nh
10%. The tem-
perature T=10 K is chosen, where a typical ARPES experi-
ment is performed. For gV / �2��=0.1t, the quasiparticle life-
time for lD=0 is of the order �
10−12 s from Fermi’s
golden rule, which is a reasonable value.3,6 Note that the
bandwidth is 8t. The scattering rate for correlated disorder
for a finite lD
4 is considerably smaller, as can be seen from
Eq. �6�. The final spectral function is obtained by averaging
over 20–50 disorder configurations until no difference is de-
tected upon further averaging. A typical result with disorder
correlation length lD=4, in units of the lattice constant, is
plotted in Fig. 1. The electron pockets are barely visible,
resembling experimental observations. From Fermi’s golden
rule, the scattering rate is proportional to the square of the
matrix element between the initial and the final states,
V�k ,k+q�
exp�−q2lD

2 /2� 
see Eq. �6��, where q is the mo-
mentum transfer in the scattering process. On average, the
scattering rate is therefore proportional to exp�−qt

2lD
2 /2�,

where qt is a typical momentum transfer. In particular, qt is
roughly the size of a pocket. Because electron pockets are
much smaller than hole pockets, the scattering rate is greater
for electron pockets. The hole pockets centered at
��� /2, �� /2� have vanishingly small spectral function on
the back side due to the coherence factors and appear as
Fermi arcs instead,30 whose lengths are further reduced by
disorder.

We also demonstrate the dependence of the spectral func-
tion A�k ,�=�� on lD in Fig. 2. The disorder correlation
lengths are lD=0, 2, 8, and 16 for panels �a� through �d�,
respectively. There are three distinct regimes depending on

lD. For small lD, the electron and hole pockets will be almost
equally scattered. As a consequence, the spectral function is
smeared out everywhere; see Fig. 2�a�. For intermediate val-
ues of lD, for example, lD=2 in Fig. 2�b� and lD=4 in Fig. 1,
scattering is more prominent for electron pockets, resulting
in a picture consisting of only four Fermi arcs. Finally, as the
correlation length lD increases further, Figs. 2�c� and 2�d�,
the electron pockets reappear. Indeed, though more disorder
scattering occurs on the electron pockets, the spatial varia-
tion in disorder, hence the net effect of disorder, becomes
weaker.

To characterize the energy dependence of the spectral
function, we compute A�k ,�� as a function of � at two k
points in the Brillouin zone. One of them is at the intersec-
tion 
Y line with the inner side of the Fermi surface, the
other is situated on the electron pocket along the direction

M; see Fig. 3. The disorder correlation length was chosen
to be lD=4. Although there are peaks at �
� for both, the
peak corresponding to the electron pocket is significantly
suppressed by disorder; the second peak at �−�
−0.2 eV
is clearly an artifact of our simple theory and such high-
energy states would surely decay once correlation effects are
taken into account by the creation of particle-hole pairs.

In Fig. 4, A�k ,�� is plotted as a function of both k and �.
The horizontal axis is along the path 
→Y →M→
 in the
Brillouin zone. The spectral function is negligibly small out-
side the reduced Brillouin zone bounded by kx�ky = ��,30

and consequently there are no peaks in the central region of
Fig. 4. Close to k= �� ,0� and �=�, A�k ,�� has very small
intensity due to long-range correlated disorder, consistent
with our previous observation that the electron pockets are
most likely unobservable.

III. SHUBNIKOV-DE HAAS OSCILLATIONS

A. The transfer-matrix method

Let us now consider the effect of disorder on SdH oscil-
lations of the conductivity, �xx. The tight-binding Hamil-

FIG. 1. The spectral function A�k ,�� at �=� with correlated
disorder corresponding to lD=4. The remaining parameters are
stated in the text.

RESOLUTION OF TWO APPARENT PARADOXES… PHYSICAL REVIEW B 80, 134503 �2009�

134503-3



tonian on a square lattice in a sample of dimension N	M,
with the lattice constant set to unity, is

H = �
i

�ici
†ci + �

i,j
ti,je

iai,jci
†cj + H.c., �9�

where ci is the fermionic annihilation operator at the site i.
The spin degrees of freedom are omitted for simplicity. The
hopping amplitude ti,j vanishes except for nearest and next-
nearest neighbors. To include twofold commensurate DDW
order, the nearest-neighbor hopping amplitudes are chosen to
be

ti,i+x̂ = − t +
iW0

4
�− 1��n+m�,

ti,i+ŷ = − t −
iW0

4
�− 1��n+m�, �10�

where �n ,m� are a pair of integers labeling a site:
i=nx̂+mŷ, and W0 is the DDW gap; for the next-nearest
hopping ti,j= t�. The on-site impurity energy �i is defined by

�i =
V0

Z
�

r
Gre

−�r − i�2/2lD
2

, �11�

which is analogous to Eq. �4�. To model correlated disorder,
we set the disorder averages �Gr�=0 and �GrGr��=�r,r�, and

FIG. 2. The spectral function
A�k ,�=�� for gV / �2��=0.1t. The
correlation lengths are lD=0, 2, 8,
and 16 from panels �a� through
�d�, respectively. The remaining
parameters are given in the text.

FIG. 3. The energy dependence of the spectral function A�k ,��
at two k points in the Brillouin zone, as indicated in the inset.

FIG. 4. �Color online� The gray scale plot of the spectral func-
tion A�k ,�� as a function of both k and �. Dashed curves indicate
the quasiparticle dispersion relation. A horizontal dashed line shows
the chemical potential �. The remaining parameters are given in the
text.
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Z=�re
−�r�2/2lD

2
is a normalization factor. V0 parameterizes the

disorder intensity. Note that Eq. �11� reduces to �i=V0Gi in
the limit lD→0 and �i becomes uncorrelated random vari-
ables. A constant perpendicular magnetic field B is included
via the Peierls phase factor ai,j=

2�e
h �j

iA ·dl, where
A= �0,−Bx ,0� is the vector potential in the Landau gauge.
We note that a perpendicular magnetic field even as large as
60 T has little effect on DDW order.31

In this section we choose t=0.29 eV, t�=0.1 eV, and
W0=0.065 eV. The chemical potential is set to be
�=−0.28 eV. Note that these parameters are slightly differ-
ent from those in the previous section, although the hole
doping is again 
10%. We have left out the third-nearest-
neighbor hopping, which greatly complicates the transfer-
matrix calculation without offering any particular insight.
The disorder intensity V0=0.4t leads to a quasiparticle life-
time on the order of 
10−12 s in the limit of lD=0. The
magnetic field ranges from B=20 T to B=75 T, representa-
tive of the quantum-oscillation experiments. The only rel-
evant length scale here is the magnetic length lB=�� /eB,
which for B=20 T is 
15a, a being lattice constant equal to
3.85 Å.

Now consider a quasi-one-dimensional system, N
M
with a periodic boundary condition along y direction. Let
�n= ��n,1 ,�n,2 , . . . ,�n,M�T be the amplitudes on the slice n
for an eigenstate with a given energy E, then the amplitudes
on three successive slices satisfy the relation

��n+1

�n
� = �Tn

−1�E − Hn� − Tn
−1Tn−1

1 0
�� �n

�n−1
� , �12�

where Hn is the Hamiltonian within the slice n and the matrix
Tn corresponds to the hopping between the slices n and
n+1. Tn is tridiagonal, as electrons can hop from a site on
slice n to three sites on the slice n+1. All postive Lyapunov
exponents of the transfer matrix,32 �1��2� ¯ ��M, are
computed by iterating Eq. �12� and performing orthonormal-
ization regularly. The convergence of this algorithm is guar-
anteed by the well-known Oseledec theorem.33 For the above
parameters a transverse dimension corresponding to M =40
is sufficient. Equation �12� was iterated 105–106 times until
the relative errors of less than 1% of all the Lyapunov expo-
nents were achieved.

B. Computation of �xx

The conductivity �xx at zero temperature is obtained from
the Landauer formula34–36

�xx�B� =
e2

h
�
i=1

M
1

cosh2�M�i�
. �13�

The SdH oscillations of �xx at zero temperature for lD=0 is
shown in the inset of Fig. 5. A third-order polynomial was
used to subtract the background. The Fourier transform is
shown in the main panel of Fig. 5. Clearly, there are two
main oscillation frequencies F1=490�30 T and
F2=900�30 T, corresponding to electron and hole pockets,
respectively, although a few harmonics are also visible.
Though the first peak at F1 agrees with experimental obser-

vations, the second peak at F2 has not yet been observed.
For correlated disorder, the Fourier transform of �xx is

plotted in Fig. 6. In all the cases, two main frequencies of
F1
500 T and F2
900 T are prominent. As for A�k ,��,
an increase in lD increases the amplitudes of F1 and F2, be-
cause the effective disorder becomes weaker with the in-
creased correlation length. Also the higher harmonics are
more visible. There is, however, a sharp distinction between
the dependence of the two physical quantities, which be-
comes clear when we consider the white-noise case: A�k ,��
is completely smeared out in the momentum space because
white-noise scatters between all possible wave vectors; see
Fig. 2�a�. The coherence factors are of crucial importance for
the spectral function. In contrast, the SdH oscillations are
damped by the Dingle factor, which is parametrized by a
single lifetime and disorder enters in an averaged sense. This
striking contrast is clear in Fig. 5. The surprise is that impu-
rity scattering affects the electron pocket more than the hole
pocket, which is remarkably robust even for white noise.
There must be a piece of physics missing, if we are to ex-
plain why the hole pocket is not observed in SdH. This miss-
ing physics we argue is the vortex scattering rate which af-
fects the two pockets very differently.

IV. VORTEX SCATTERING RATE IN THE MIXED STATE

We have shown previously9 that the scattering rate of the
DDW quasiparticles, corresponding to the electron pockets
from vortices in the mixed state is given by,

� 1

�c�v
�

e
�

�2

�
� �

�����c
3 , �14�

where the cyclotron frequency �c is determined from the
band mass mb to be �restoring the lattice spacing a here�

�2

2mb
� �2t� + 4t� −

W0

4
�a2. �15�

Here �2, a measure of the amplitude of the superconducting
gap, is an average over the disordered configuration of the

FIG. 5. Fourier transform of SdH oscillations at zero tempera-
ture for lD=0 in arbitrary units. Inset shows oscillations as a func-
tion of the inverse magnetic field. Note the presence of higher har-
monics. The parameters are described in the text.
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vortices, which is likely to be insensitive to the symmetry of
the order parameter. Similarly, we have shown that the vor-
tex scattering rate for the nodal DDW quasiparticles at the
hole pocket is given by �noting a typographical error in Ref.
9�

� 1

�v
�

h
�

�2

�

�2�

������c
�

. �16�

The relevance of nodal quasiparticle dispersion is also
pointed out in Ref. 13. We have introduced a characteristic
mass and a frequency scale by �nodal quasiparticle are actu-
ally massless�

m� =
���

vFvD
, �17�

�c
� =

eB

m�c
. �18�

The reason for this is that these are precisely the scales that
enter a SdH calculation of the nodal quasiparticles.37 It can
be seen from the above equations that the vortex scattering
rate for the nodal particles is proportional to 1 /�W0. This
diverges as W0→0. But this is not unphysical, as, in that
limit, there is a phase transition, where the Fermi-surface
reconnects.17 The nodal fermions are obviously no longer a
valid description. However, our mean-field theory cannot be
trusted to predict the precise scattering rate at this quantum
critical point. We have restricted ourselves to a regime that
we believe is deep inside the broken-symmetry phase where
our treatment should be a good guide, and where we believe
that the present experiments are performed. A proper treat-
ment of this scattering rate at the point where W0 collapses is
an open question that may shed light to the physics of the
striking strange metal phase.

The physical picture underlying the calculation of
Stephen29 is that the lifetime obtained from the imaginary
part of the self-energy corresponds to a situation as if the
vortices are static impurities. Here vF=2�2at /� is the mag-
nitude of the velocity in a direction normal to the hole pocket
and vD=W0a /�2� is the velocity in a direction orthogonal to
it; neither t� nor t� enter in the leading order. Therefore,

� 1

�c
��v

�
h

� �2�m�

mb
�3/2� 1

�c�v
�

e

�19�

The cancellation of �2 is interesting but cannot of course be
an exact result considering the approximations involved in
Stephen’s analysis.29 The correctness of which relies entirely
on the formulation of the averaged Green’s function of
Stephen, where this average is carried out in the real space,
and the nature of the normal state �whether or not it contains
electron and hole pockets in the momentum space� does not
enter, as the normal-state Green’s function does not contain
the superconducting order parameter. On the other hand, we
had roughly estimated mb�1.27me and m��2.72me for a
typical set of parameters,9 where me is the free-electron
mass. Thus, it is reasonable that

� 1

�c
��v

�
h

� 4.4� 1

�c�v
�

e

, �20�

which should be robust with respect small changes in the
band parameters and the DDW gap. This would lead to a
strong suppression of the oscillations corresponding to the
hole pocket as compared to the electron pocket, as the Dingle
factors, De,h are exponentially sensitive to the product of the
cyclotron frequency and the vortex scattering lifetime:
De=e−�/��c�v�e and Dh=De

4.4. The previously estimated life-
time of the electrons,9

� 1

�v
�

e
= 1.5 	 1012 s−1, �21�

for B=40 T and Bc2=60 T should be a rough guide.
The whole analysis is predicated on the assumption that

the quantum-oscillation frequencies are unshifted from the

FIG. 6. Fourier transform of SdH oscillations for correlated dis-
order at zero temperature. The correlation length lD=1, 2, 4, 8, and
16 for panels �a� through �e�, respectively. The remaining param-
eters are described in the text.
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putative normal state �the DDW state in this case�, for which
we now provide some support from the analysis of
Stephen;29 see, however Ref. 38. The formula for the relative
frequency shift in terms of physical parameters �absolutely
essential because they are all effective parameters� is

�F

F
=

�

8

��H�4

��c���3
, �22�

where ��H� is the zero-temperature superconducting gap in a
magnetic field; for a d-wave superconductor we have to use
an appropriate average, as above. The factor ��c for free
electrons is given by

��c = 1.34 	 10−4 	 H �T�eV. �23�

As will be seen below, it will make little difference if we use
the mass determined from experiments. The magnetic field
ranges between 30 and 65 T. Let us take H=40 T. Then

��c = 5.36 	 10−3 eV. �24�

We know little about the zero-temperature gap, especially in
the underdoped regime, where there are fluctuation effects.
As the simplest assumption, we use BCS mean-field theory,

��H� = ��0��1 − H/Hc2 �25�

and 2��0�=3.52Tc, which results in

��0� = 8.6 meV �26�

for Tc=57.5 K.1,2 For simplicity we choose
��0��10 meV, and as a rough guide from experiments,1,2

Hc2�60 T, although it will make little difference even if it
were 100 T. For 10% doping we need a chemical potential
��−0.26 eV. Thus, we get

�F

F
= 4.6 	 10−6. �27�

Even if this estimate were incorrect by several orders of
magnitude, our conclusions that the frequency shift is negli-
gible should be valid.

Consider the white noise as an example; see Fig. 5. We
first filter out the two peaks, invert the Fourier transform, and
then multiply by the Dingle factors corresponding to the vor-
tex scattering rates discussed in this section. Using Eqs. �20�
and �21� and Fourier transforming back this procedure essen-
tially wipes out the peak corresponding to the frequency of
hole pocket in the resulting transform, as shown in Fig. 7.

V. CONCLUSIONS

In summary, we have shown that two of the most puzzling
features in underdoped cuprates, the nonexistence of electron
pockets in ARPES and the lack evidence of the hole pockets
in quantum oscillations can be plausibly resolved by consid-
ering correlated disorder and the vortex scattering rates in the
mixed state. With respect to the latter, it is crucial that the
nodal fermions are described by a relativistic spectrum while
the quasiparticles corresponding to the electron pocket are

described by a nonrelativistic spectrum determined by the
bottom of the band.

It is important to determine if the calculation of Stephen
can be so closely taken over after modifying for the presence
of nodal fermions. We believe that it can be because the
relative frequency shift turns out to be very small, on the
order of 10−6. Thus, even if the estimate is off by some
orders of magnitude, we still have enough leeway. This ar-
gument has been recently challenged38 in a calculation of the
density of states, however. Clearly, further investigations will
be extremely valuable and are in progress.

One of the surprising conclusions of the present work,
which we believe is on firm grounds, is that even very strong
disorder, such as white noise, has only a modest effect on
quantum oscillations, while it has a much larger effect on the
ARPES spectra. This is because ARPES spectral function
depends on the coherence factors, which act as Wannier
functions that are naturally very sensitive to disorder. In
quantum-oscillations disorder appears primarily as an aver-
aged lifetime in the Dingle factor. Elastic scattering has little
direct effect on the Onsager quantization condition.

It is also a firm conclusion of our work that elastic disor-
der scattering from impurities cannot be responsible for wip-
ing out the hole-pocket frequency while keeping the electron
pocket frequency more or less intact. In fact, quite the oppo-
site seems to be true. Thus, the vortex physics in the mixed
state appears to be of paramount importance, especially the
contrast between the nonrelativistic electrons around the an-
tinodal point and the relativistic nodal fermions at the nodal
points of the Brillouin zone.

We also note an interesting paper39 regarding an analysis
of various masses involved, which take into account
electron-electron interactions. In the future, it would be in-
teresting to pursue such an analysis of residual electron-
electron interactions in the present context.
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FIG. 7. Fourier transform of SdH oscillations shown in Fig. 5,
after taking into account vortex scattering rates in the mixed state,
as discussed in the text. Note that the amplitude of the peak corre-
sponding to the hole pocket at about 900 T is essentially wiped out.
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